文献库 文献相关信息

题目:
Phosphorylation of SRSF1 is modulated by replicational stress.
作者:
Leva(Valentina),Giuliano(Serena),Bardoni(Anna),Camerini(Serena),Crescenzi(Marco),Lisa(Antonella),Biamonti(Giuseppe),Montecucco(Alessandra)
状态:
发布时间2012-02-08 , 更新时间 2016-11-25
期刊:
Nucleic Acids Res
摘要:
DNA ligase I-deficient 46BR.1G1 cells show a delay in the maturation of replicative intermediates resulting in the accumulation of single- and double-stranded DNA breaks. As a consequence the ataxia telangiectasia mutated protein kinase (ATM) is constitutively phosphorylated at a basal level. Here, we use 46BR.1G1 cells as a model system to study the cell response to chronic replication-dependent DNA damage. Starting from a proteomic approach, we demonstrate that the phosphorylation level of factors controlling constitutive and alternative splicing is affected by the damage elicited by DNA ligase I deficiency. In particular, we show that SRSF1 is hyperphosphorylated in 46BR.1G1 cells compared to control fibroblasts. This hyperphosphorylation can be partially prevented by inhibiting ATM activity with caffeine. Notably, hyperphosphorylation of SRSF1 affects the subnuclear distribution of the protein and the alternative splicing pattern of target genes. We also unveil a modulation of SRSF1 phosphorylation after exposure of MRC-5V1 control fibroblasts to different exogenous sources of DNA damage. Altogether, our observations indicate that a relevant aspect of the cell response to DNA damage involves the post-translational regulation of splicing factor SRSF1 which is associated with a shift in the alternative splicing program of target genes to control cell survival or cell death.
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。