文献库 文献相关信息

题目:
Methamphetamine-induced changes in the striatal dopamine pathway in μ-opioid receptor knockout mice.
作者:
Park(Sang Won),Shen(Xine),Tien(Lu-Tai),Roman(Richard),Ma(Tangeng)
状态:
发布时间2011-12-02 , 更新时间 2016-10-25
期刊:
J Biomed Sci
摘要:
Repeated exposure to methamphetamine (METH) can cause not only neurotoxicity but also addiction. Behavioral sensitization is widely used as an animal model for the study of drug addiction. We previously reported that the μ-opioid receptor knockout mice were resistant to METH-induced behavioral sensitization but the mechanism is unknown.,The present study determined whether resistance of the μ-opioid receptor (μ-OR) knockout mice to behavioral sensitization is due to differential expression of the stimulatory G protein α subunit (Gαs) or regulators of G-protein signaling (RGS) coupled to the dopamine D1 receptor. Mice received daily intraperitoneal injections of saline or METH (10 mg/kg) for 7 consecutive days to induce sensitization. On day 11(following 4 abstinent days), mice were either given a test dose of METH (10 mg/kg) for behavioral testing or sacrificed for neurochemical assays without additional METH treatment.,METH challenge-induced stereotyped behaviors were significantly reduced in the μ-opioid receptor knockout mice when compared with those in wild-type mice. Neurochemical assays indicated that there is a decrease in dopamine D1 receptor ligand binding and an increase in the expression of RGS4 mRNA in the striatum of METH-treated μ-opioid receptor knockout mice but not of METH-treated wild-type mice. METH treatment had no effect on the expression of Gαs and RGS2 mRNA in the striatum of either strain of mice.,These results indicate that down-regulation of the expression of the dopamine D1 receptor and up-regulation of RGS4 mRNA expression in the striatum may contribute to the reduced response to METH-induced stereotypy behavior in μ-opioid receptor knockout mice. Our results highlight the interactions of the μ-opioid receptor system to METH-induced behavioral responses by influencing the expression of RGS of dopamine D1 receptors.
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。