文献库 文献相关信息

题目:
RGS proteins determine signaling specificity of Gq-coupled receptors.
作者:
Xu(X),Zeng(W),Popov(S),Berman(D M),Davignon(I),Yu(K),Yowe(D),Offermanns(S),Muallem(S),Wilkie(T M)
状态:
发布时间1999-02-26 , 更新时间 2015-11-19
期刊:
J Biol Chem
摘要:
Regulators of G protein signaling (RGS) proteins accelerate GTP hydrolysis by Galpha subunits, thereby attenuating signaling. RGS4 is a GTPase-activating protein for Gi and Gq class alpha subunits. In the present study, we used knockouts of Gq class genes in mice to evaluate the potency and selectivity of RGS4 in modulating Ca2+ signaling transduced by different Gq-coupled receptors. RGS4 inhibited phospholipase C activity and Ca2+ signaling in a receptor-selective manner in both permeabilized cells and cells dialyzed with RGS4 through a patch pipette. Receptor-dependent inhibition of Ca2+ signaling by RGS4 was observed in acini prepared from the rat and mouse pancreas. The response of mouse pancreatic acini to carbachol was about 4- and 33-fold more sensitive to RGS4 than that of bombesin and cholecystokinin (CCK), respectively. RGS1 and RGS16 were also potent inhibitors of Gq-dependent Ca2+ signaling and acted in a receptor-selective manner. RGS1 showed approximately 1000-fold higher potency in inhibiting carbachol than CCK-dependent signaling. RGS16 was as effective as RGS1 in inhibiting carbachol-dependent signaling but only partially inhibited the response to CCK. By contrast, RGS2 inhibited the response to carbachol and CCK with equal potency. The same pattern of receptor-selective inhibition by RGS4 was observed in acinar cells from wild type and several single and double Gq class knockout mice. Thus, these receptors appear to couple Gq class alpha subunit isotypes equally. Difference in receptor selectivity of RGS proteins action indicates that regulatory specificity is conferred by interaction of RGS proteins with receptor complexes.
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。